i

Bylac

High Speed Development

Traffic Lights

(** Please complete introduction first **)

Here we use input output to simulate traffic lights using three leds of appropriate colour.
The leds are connected to pins B15(RED), B14(AMBER) and B13(GREEN)

Step 1: Wire the device to the three leds

Because this applies to all PCB's including the IC a simplified diagram is here:

PORTB/15 Long Lead /. Short Lead

PORTB/14 Long Lead ,Q Short Lead

PORTB/13 Long Lead A Short Lead GND

On a bread board it will look something like this

177

http://www.bypic.co.uk/index.php/%282%29_Traffic_Lights
http://www.byvac.com/
http://www.bypic.co.uk/index.php/(1)_Introduction

Step 2: Cut and past the following into the editor:

//

// #include "http://www.byvac.com/mBlib/flb/Library/2016/lib_io.bas"
//

// The leds are connected to port B pins 15 to 13

constant RED {PORTB(PORT),15}

constant AMBER {PORTB(PORT),14}

constant GREEN {PORTB(PORT),13}

// set the pins to be output
function init()
io_pinRole(*RED(),OUT,WOFF)
io_pinRole(*AMBER(),0UT,WOFF)
io_pinRole(*GREEN(),OUT,WOFF)
endf

217

Fe

B PSPad - [Newl.bas *] th=-|'@'h-ﬂ-l
E’Eile Projects Edit Search Wiew Format Tools Scripts HTML Settings Window

Help(x)
PO e -Gk ~e~E--@| R TR0l BEE
¢ ex|s1@siam-«

& B e B | @ &

¥ 1..Newl.bas

1f

2

&l = leds

Ml cons=tant EED {PO (PCET) ,

LY constant AMBER {PCORETE (PORT),

M constant GREEN {PORTE (PORT) ,

T

=9

3]
10 io pinRole (*RED(}) ,OUT, WOFF)
11 io pinRole (*AMEER () , OUT, WOFF)
12 io pinRole (*GREEN () ,OUT, WOFF)
13 Eitshil

[
e

4 I F

1:3/14 [381]

A
Ui

ByPic DOS

The first thing to notice is the // #include at the top of the program, this is a library file
which makes input output easier. The 'include’ will direct the IDE to place the contents of
this file into flash and so will be there semi-permanently.

Lines 10 to 12 relate the hardware to a meaningful name. The syntax may be a little
strange but on RED you can see PORTB and 15 making it reasonably obvious. The only
function so far is init() which will set the lines to output.

Step 3: Send the text over to the device using F4

IMPORTANT wait until it is completed, this will take a little longer the first time as the
library is being loaded into flash. Subsequent loads will detect the presence of the library
and will not load it again. Note the numbers at the top of the terminal.

3/7

E' bvserial.exe - Shortout

[1ib_io.bas1¢32> constant: RC1

[1ib_io.bas1¢33> constant: RC2

[1ib_io.bas1¢{34> constant: RC3

[lib_io.bas1¢(35%> constant: RC4

[lib_io.baz1¢{36> constant: RCS

[lib_io.bazs1¢37> constant: RCE

[1ib_io.ha=1¢(38» constant: RC?

[1ib_io.ha=1(39>» constant: RCBH

[1ib_io.ha=s 1(48>» constant: RCY?

[1lib_io.baz1(54> function: io_pinRole{=pin{),ionorout. pulldl
[1lib_io.baz1(?1> function: io_pinSet<{=*pin{>.valuel
[1ib_io.ha=z1(?9» function: io_pinGet<{=*pinC>>
[1ib_io.ha=s 1(98>» function: io_getPort{=port{d>
[1ib_io.ha=z1(99» function: io_setPort(*port{>.valuel
[lib_io.haz 1{186>» function: io_setPortH(+port<>,.valuel
[1ib_ 1u.has](113) function: io_setPortL{=port{d . valuel
RAM — Hewl_.bhas — RAM

[Hewl .bas1¢3>» constant: RED

[Hewl .bhas 1¢{4» constant: AMBER

[Hewl .bhas1¢{5>» constant: GREEN

[Hewl.bas1¢8>» function:= initC>

Done

ok

4

Step 4: type init()

Step 5: type io_pinSet(*RED(),1) (note the * before the RED())

ESREERE)

This will illuminate the RED led if not illuminated already, if not check the wiring, do the
same for the AMBER and GREEN, io_pinSet(*RED(),0) will switch it off. (HINT Use the

up/down arrow keys for command history.)

Traffic Light States

There are just 4 states that a set of traffic lights can be in that is:
Fig. 6 Traffic light states
We can model this is a function.

Step 6: Add the text below to the editor under the init() function, don't
forget the blank line at the end:

function light_state(n)
select(n)

case(1)
io_pinSet(*RED(),1)
io_pinSet(*AMBER(),0)
io_pinSet(*GREEN(),0)

case(2)
io_pinSet(*RED(),1)
io_pinSet(*AMBER(),1)
io_pinSet(*GREEN(),0)

case(3)
io_pinSet(*RED(),0)
io_pinSet(*AMBER(),0)
io_pinSet(*GREEN(),1)

a/7

case(4)
io_pinSet(*RED(),0)
io_pinSet(*AMBER(),1)
io_pinSet(*GREEN(),0)
endselect
endf

Step 7: Send to the device using F4
Step 8: type:

e init()

e light_state(1)
o light_state(2)
e light_state(3)
¢ light_state(3)

This will test all of the states
Timing

There are a few options we could use here, lets say we want the following: (real timing
takes too long)

(1) RED: 15 seconds
(2) RA: 2 seconds
(3) GREEN 15 seconds
(4) AMB 4 seconds

Method 1 a simple delay

Step 8: Copy and paste text below into the editor below the last function, then press F4

function method1()
init()
print "Running\r\n"
while comkey?(2) = 0
light_state(1) // red for 15 seconds
wait(15000) // 1000 = 1 second
light_state(2) // red and amber for 2
wait(2000)
light_state(3) // green for 15 seconds
wait(15000)
light_state(4) // amber 10 seconds
wait(10000)
wend
endf

The above uses simple a simple wait to go onto the next state. The ‘comkey?(2)' is reading
the input from UART2 to which the terminal is connected, when a key is received from the

5/7

terminal comkey?(2) will NOT be zero anymore and so the loop will finish. NOTE that this
is only read at the start of the sequence so pressing a key at the terminal will only stop the
loop when the sequence has fished, this could take up to 42 seconds given the above
timings.

The big disadvantage with this method is that the device cant do anything else as the
wait() function will tie the device up, known as a blocking function. If the device was
needed to do other things then another method is needed.

Method 2 Using Tasks

Built into ByPic is a task scheduling system that is very useful for handing of a job so that
we can get on with something else. A task will run a function on a timed interval which is
more or less what is needed. We could set up a task for each light however if the timing
drifts a bit off then the lights will get out of sequence so we create a function called
traffic_ir.

Step 9: copy the traffic_ir function below and add to the end of the existing code.
dim current_seconds

function traffic_ir()
if current_seconds > 40 then
current_seconds =0
endif

if current_seconds = 0 then // red
light_state(1)

endif

if current_seconds = 15 then // red+amber
light_state(2)

endif

if current_seconds = 20 then // green
light_state(3)

endif

if current_seconds = 35 then // amber
light_state(4)

endif

current_seconds = current_seconds + 1 // update count

endf

Note that there is also a variable defined called current_time, this will keep track of the
number of seconds that have passed, see as a particular value is reached it changes the
state of the traffic lights.

Step 10: Add the code below to the end of the file
function method2()

init()

current_seconds = 0

6/7

taskadd("traffic_ir()",1,1000,1)
endf

After loading the code with F4 type method2() This uses the built in scheduler to run the
sequence. Note that you can still type into the terminal and even disrupt the sequence. Try
print current_seconds to see where it is up to.

To stop the sequence type taskclr()

Method 3 Using a Timer

This is a bit more complex but will allow other operations when the program is running,
similar to the task. Times are more accurate than the task and so should be reserved for
accurate timings. This method uses a timer and interrupt, the timer will trigger the
interrupt every second and a global variable will keep track of the seconds

Step 9: Add the two lines below to the top of the file, above the lib.io.bas include file.

// #include "http://www.byvac.com/mBlib/flb/Library/2016/lib_tmr.bas"
// #include "http://www.byvac.com/mBlib/flb/Library/2016/lib_ir.bas"

And this text to the end of the current program

function method3()
init()
current_seconds = 0
print "Running\r\n"
tmr_init(*TIMER23(),7,312500) // 1 second
ir_set(*TIMER23(),3,"traffic_ir")

endf

Step 10: IMPORTANT type reset or taskclr() before loading the above program. This will
clear the schedule as it will still try to do its scheduling whilst downloading is taking place
and this will interfere with the download process. Use |A to send the whole thing over
again.

Step 11: Type method3()

717

	ByPic
	High Speed Development
	Traffic Lights
	Traffic Light States
	Timing
	Method 1 a simple delay
	Method 2 Using Tasks
	Method 3 Using a Timer

